• 个性签名
  • 格言大全
  • 名言大全
  • 笑话大全
  • 知识问答
  • 生活家居
  • 星座运势
  • 宝宝起名
  • 休闲爱好
  • 百科大全
  • 微生物与地球圈层研究说(地球与空间微生物学概论)

    栏目: 知识 日期:2022-12-28 00:10:52 浏览量(来源:小柏

    [摘要]微生物与地球圈层研究说(地球与空间微生物学概论),关于《微生物与地球圈层研究说(地球与空间微生物学概论)》的内容介绍。如何区别生物圈及生态系统? 概念区别:生物圈是指地球上凡是出现并感受到生命活动影响的地区,是地表有机体包括微生...

    微生物与地球圈层研究说(地球与空间微生物学概论),关于《微生物与地球圈层研究说(地球与空间微生物学概论)》的内容介绍。

    微生物与地球圈层研究说(地球与空间微生物学概论)

    如何区别生物圈及生态系统? 概念区别:生物圈是指地球上凡是出现并感受到生命活动影响的地区,是地表有机体包括微生物及其自下而上环境的总称。生物圈是行星地球特有的圈层,它是...

    如何区别生物圈及生态系统?

    概念区别:生物圈是指地球上凡是出现并感受到生命活动影响的地区,是地表有机体包括微生物及其自下而上环境的总称。生物圈是行星地球特有的圈层,它是包含了地球上所有形式的生态系统,是最大的生态系统。生态系统是指在自然界的一定的空间内,生物与环境构成的统一整体,在这个统一整体中,生物与环境之间相互影响、相互制约,并在一定时期内处于相对稳定的动态平衡状态。生态系统的范围可大可小,相互交错。空间区别:生态系统是指在自然界的一定的空间内,生物与环境构成的统一整体。生物圈是指地球上凡是出现并感受到生命活动影响的地区。生态系统是生物与环境构成的“环”;而生物圈是生物活动形成的“面”。生态系统这个统一整体中,生物与环境之间相互影响、相互制约,并在一定时期内处于相对稳定的动态平衡状态。而生物圈是地表有机体包括微生物及其自下而上环境(行星地球)特有的圈层。生物圈是地球上最大的生态系统。组成区别:生态系统主要由非生物的物质和能量、生产者、消费者、分解者组成。其中:生产者为生态系统主要成分;无机环境是一个生态系统的基础;条件的好坏直接决定生态系统的复杂程度和其中生物群落的丰富度。生态系统中的生物群落反作用于无机环境,生物群落在生态系统中既在适应环境,也在改变着周边环境的面貌,各种基础物质将生物群落与无机环境紧密联系在一起,而生物群落的初生演替甚至可以把一片荒凉的裸地变为水草丰美的绿洲。生态系统各个成分的紧密联系,这使生态系统成为具有一定功能的有机整体。生物圈主要由生命物质、生物生成性物质和生物惰性物质三部分组成。生命物质又称活质,是生物有机体的总和;生物生成性物质是由生命物质所组成的有机矿物质相互作用的生成物,如煤、石油、泥炭和土壤腐殖质等;生物惰性物质是指大气低层的气体、沉积岩、粘土矿物和水。

    什么是生物圈,生物圈的范围包括哪些

    生物圈(biosphere)是指:地球上凡是出现并感受到生命活动影响的地区。是地表有机体包括微生物及其自下而上环境的总称,是行星地球特有的圈层。它也是人类诞生和生存的空间。生物圈是地球上最大的生态系统。

    简介

    生物圈(Biosphere)是指地球上所有生态系统的统合整体,是地球的一个外层圈,其范围大约为海平面上下垂直约10公里。它包括地球上有生命存在和由生命过程变化和转变的空气、陆地、岩石圈和水。从地质学的广义角度上来看生物圈是结合所有生物以及它们之间的关系的全球性的生态系统,包括生物与岩石圈、水圈和空气的相互作用。生物圈是一个封闭且能自我调控的系统。地球目前是整个宇宙中唯一已知的有生物生存的地方。一般认为生物圈是从35亿年前生命起源后演化而来的。

    词源与应用

    地质学家爱德华·苏威斯于1875年最早使用生物圈这个词。它本来是一个地质学的词。它显示了查尔斯·罗伯特·达尔文和马修· 方丹· 莫里的理论对地球科学的影响。1920年代生物圈这个词获得它的生态意义。1935年生态系统这个词被引入。弗拉基米尔·沃纳德斯基将生态学定义为研究生物圈的科学。生物圈这个概念今天集合了天文学、地质物理学、气象学、生物地理学、演化论、地质学、地质化学、水文学等多项科学,可以说它集合了所有与地球和生命有关的科学。

    定义

    地球上所有的生物与其环境的总和就叫生物圈。

    生物圈 是所有生物链的一个统称,他包含了 生物链和所有细微的生物和生态环境,生态系统等.

    生物圈是地球上最大的生态系统,也是最大的生命系统。

    生物圈

    生物圈是自然灾害主要发生地,它衍生出环境生态灾害。生物圈是地球上凡是出现并感受到生命活动影响的地区,是地表有机体包括微生物及其自下而上环境的总称,是行星地球特有的圈层。它也是人类诞生和生存的空间。生物圈的范围是:大气圈的底部、水圈大部、岩石圈表面。

    范围

    生物圈包括海平面以上约10000米至海平面以下10000米处,包括大气圈底部(可飞翔的鸟类、昆虫、细菌等),岩石圈的表面(是一切生物的“立足点”),水圈的大部(距离海平面150米内的水层)。生物圈为生物的生存提供了基本条件:营养物质、阳光、空气和水、适宜的温度和一定的生存空间。但是,大部分生物都集中在地表以上100米到水下100米的大气圈、水圈、岩石圈、土壤圈等圈层的交界处,这里是生物圈的核心。

    生物圈里繁衍着各种各样的生命,为了获得足够的能量和营养物质以支持生命活动,在这些生物之间,存在着吃与被吃的关系。“大鱼吃小鱼,小鱼吃虾米”,这句俗语就体现了这样一种简单的关系。但是,要维持整个庞大的生物圈的生命活动,这么简单的关系显然是不行的。生物圈有自我调节的能力。生物圈是一个统一的整体。

    生物圈中的各种生物,按其在物质和能量流动中的作用,可分为:生产者,主要是绿铯植物,它能通过光合作用将无机物合成为有机物。

    消费者,主要指动物(人当然也包括在内)。有的动物直接以植物为生,叫做一级消费者,比如羚羊;有的动物则以植食动物为生,叫做二级消费者;还有的捕食小型肉食动物,被称做三级消费者。至于人,则是杂食动物。

    分解者,主要指微生物,可将有机物分解为无机物。这三类生物与其所生活的无机环境一起,构成了一个生态系统:生产者从无机环境中摄取能量,合成有机物;生产者被一级消费者吞食以后,将自身的能量传递给一级消费者;一级消费者被捕食后,再将能量传递给二级、三级……最后,当有机生命死亡以后,分解者将它们再分解为无机物,把来源于环境的,再复归于环境。这就是一个生态系统完整的物质和能量流动。只有当生态系统内生物与环境、各种生物之间长期的相互作用下,生物的种类、数量及其生产能力都达到相对稳定的状态时,系统的能量输入与输出才能达到平衡;反过来,只有能量达到平衡,生物的生命活动也才能相对稳定。所以,生态系统中的任何一部分都不能被破坏,否则,就会打乱整个生态系统的秩序。请大家善待所有的动物。

    生态系统的类型:森林生态系统、草原生态系统、湿地生态系统、淡水生态系统、农田生态系统、海洋生态系统、城市生态系统等。

    生物圈是一个统一的整体,是地球上最大的生态系统,是所有生物共同的家园。我们必须明白,人也是生态系统中扮演消费者的一员,人的生存和发展离不开整个生物圈的繁荣。因此,保护生物圈就是保护我们自己。所以,从现在开始,关心爱护你身边的生态环境,共同营造我们的绿铯家园吧!

    结构

    地球表层由大气圈、水圈和岩石圈构成,三圈中适于生物生存的范围就是生物圈。水圈中几乎到处都有生物,但主要集中于表层和浅水的底层。世界大洋最深处超过11000米,这里还能发现深海生物。限制生物在深海分布的主要因素有缺光、缺氧和随深度而增加的压力。大气圈中生物主要集中于下层,即与岩石圈的交界处。鸟类能高飞数千米,花粉、昆虫以及一些小动物可被气流带至高空,甚至在22000米的平流层中还发现有细菌和真菌。限制生物向高空分布的主要因素有缺氧、缺水、低温和低气压。在岩石圈中,生物分布的最深记录是生存在地下2500~3000米处石油中的石油细菌,但大多数生物生存于土壤上层几十厘米之内。限制生物向土壤深处分布的主要因素有缺氧和缺光。由此可知,虽然生物可见于由赤道至两极之间的广大地区,但就厚度来讲,生物圈在地球上只占据薄薄的一层。

    人与生物圈

    综述

    人是生物圈中占统治地位的生物,能大规模地改变生物圈,使其为人类的需要服务。然而,人类毕竟是生物圈中的一个成员,必需依赖于生物圈提供一切生活资料。人类对生物圈的改造应有一定限度,超过限度就会破坏生物圈的动态平衡,造成严重后果。在地球上出现人类以后大约300万年的时期里,人类与其周围的生物和环境处于合理的平衡之中。人在生物圈中的地位,从对生物圈能施加的影响而言,并不明显地超过其他动物。食物缺乏以及疾病等因素限制着人口密度。

    粮食问题

    大约1万年以前,人类学会栽培植物。农业技术和贮存方法的改善,使人类生活不再局限于天天采集必需的食品,而能够从事更多的创造性活动。随着生产力的提高,人口逐渐增加并向城市集中,制造商品的手工业日益发展,人类活动对环境的影响和冲击也日益增加。尤其是产业革命以后的近几百年,开矿、挖煤、采油、伐林、垦荒、捕捞等规模迅速扩大,生物圈的面貌也发生了极大变化。这种变化不仅影响着其中的其他成员,也对人类自身产生巨大影响。20世纪60年代以来,人口的膨胀、世界资源的相对短缺和大范围的环境污染,迫使人们从生物圈的角度考虑问题和解决问题。70年代相继召开的一系列国际会议,如1971年联合国创议的“人与生物圈会议”、1972年的“人类环境会议”、1974年的“世界人口会议”等,便反映了上述认识。

    世界人口正以大约35年翻一番的速度猛增,但地球上可耕土地却是有限的,这必然造成全球范围的粮食问题。滥垦、滥牧、滥伐的日益严重,建设用地的高速扩展,都使全球植被减少。随之而来的后果是大范围的水土流失,耕地质量下降甚至发生荒漠化;失去了植被调节气候的作用,气温波动增大,水旱灾害增多;太阳辐射被反射散失的成分增加,绿铯植物固定CO、产生O的能力随植被减少而等比地丧失。水域捕捞也已接近极限,某些鱼类多次大规模减产。化石燃料是现代工业的基石之一,但它的蕴藏量毕竟是有限的。随着使用速度的日益增长,燃料危机不断加剧。

    环境污染

    环境污染现已成为世界性问题。因工业排放含硫氧化物和氮氧化物的烟雾而造成酸雨波及数百里之外;燃烧油、煤及翻耕土地排出的CO弥散于全球大气中,有可能因向下反射地表的红外辐射而提高气温;喷气式飞行器排放的氮氧化物可能减少高空的臭氧,从而削弱对太阳紫外线的屏蔽作用;很多污染物随水流扩散到远处,造成明显为害。目前世界癌瘤发病率的升高,可能与环境污染有关。

    总之,地球的资源是有限的,经不起日益膨胀的人口任意浪费;世界上现存的生态系统面对着工业倾吐出来的大量污染物,显得相当脆弱。自工业革命以来,都市不断扩大,自然保护的呼声也随之增高。然而只有到了生态学高度发展以后,人们才对自然保护有了比较正确的认识。自然保护并不是对自然资源弃置不用,任其自生自灭,而是积极地进行合理开发。

    自然生态系统

    自然生态系统达到成熟阶段时,其能量和物质的输入、输出之间往往保持相对平衡,而系统中的生物种数以及各种群的数量比例也相对稳定。这种生态平衡状态给生态学家以很大的启发:人类不仅要力求增进能利用的效率(生态效率),还要维持物质循环源源不断,这是问题的一个方面;另一方面,人类今天要处理的是“人与生物圈”系统中,人的物质要求与环境的稳定供应之间的平衡。为此,某些自然系统一定要被生产效率更高的人工系统取代,原有的生态平衡要打破,而代之以人为干预下的新型平衡。例如在人为的农业生产系统中,取得最大产量所利用的并不是系统的成熟阶段,而往往是发展过程中的中间阶段。人类不仅要求生物圈能长期稳定地满足其不断增长的物质要求,而且要求环境质量不降低。造成这样的“人与生物圈”系统的总体平衡是人类的主要目标。

    地球生物进化有五个代,是哪五个啊?各有那些纪?其中重要的有哪些呢??

    生命的起源

    生命的起源应当追溯到与生命有关的元素及化学分子的起源.因而,生命的起源过程应当从宇宙形成之初、通过所谓的“大爆炸”产生了碳、氢、氧、氮、磷、硫等构成生命的主要元素谈起。

    大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系。作为太阳系一员的地球也在46亿年前形成了。接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态。高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构。这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致。

    生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。

    38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。

    原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙

    太古代[前震旦纪(18亿年前到45亿年前)]和元古代[震旦纪(5亿7千万年前到18亿年前)]

    太古宙(Archean)是最古老的地史时期。从生物界看,这是原始生命出现及生物演化的初级阶段,当时只有数量不多的原核生物,他们只留下了极少的化石记录。从非生物界看,太古宙是一个地壳薄、地热梯度陡、火山—岩浆活动强烈而频繁、岩层普遍遭受变形与变质、大气圈与水圈都缺少自由氧、形成一系列特殊沉积物的时期;也是一个硅铝质地壳形成并不断增长的时期,又是一个重要的成矿时期。

    元古宙(Proterozoic)初期地表已出现了一些范围较广、厚度较大、相对稳定的大陆板块。因此,在岩石圈构造方面元古代比太古代显示了较为稳定的特点。早元古代晚期的大气圈已含有自由氧,而且随着植物的日益繁盛与光合作用的不断加强,大气圈的含氧量继续增加。元古代的中晚期藻类植物已十分繁盛,明显区别于太古代。

    震旦纪(Sinian period)是元古代最后期一个独特的地史阶段。从生物的进化看,震旦系因含有无硬壳的后生动物化石,而与不含可靠动物化石的元古界有了重要的区别;但与富含具有壳体的动物化石的寒武纪相比,震旦系所含的化石不仅种类单调、数量很少而且分布十分有限。因此,还不能利用其中的动物化石进行有效的生物地层工作。震旦纪生物界最突出的特征是后期出现了种类较多的无硬壳后生动物,末期又出现少量小型具有壳体的动物。高级藻类进一步繁盛,微体古植物出现了一些新类型,叠层石在震旦纪早期趋于繁盛,后期数量和种类都突然下降。再从岩石圈的构造状况来看,震旦纪时地表上已经出现几个大型的、相对稳定的大陆板块,之上已经是典型的盖层沉积,与古生界相似。因此,震旦纪可以被认为是元古代与古生代之间的一个过渡阶段。

    古生代开始

    藻类和无脊椎动物时代

    寒武纪(5亿7千万年前到5亿1千万年前 三叶虫时代

    寒武纪(Cambrian period)是古生代的第一个纪,开始于距今5.4亿年,延续了4000万年。寒武纪是生物界第一次大发展的时期,当时出现了丰富多样且比较高级的海生无脊椎动物,保存了大量的化石,从而有可能研究当时生物界的状况,并能够利用生物地层学方法来划分和对比地层,进而研究有机界和无机界比较完整的发展历史。

    比较著名的有早寒武世云南的澄江动物群、加拿大中寒武世的布尔吉斯页岩生物群。寒武纪的生物界以海生无脊椎动物和海生藻类为主。无脊椎动物的许多高级门类如节肢动物、棘皮动物、软体动物、腕足动物、笔石动物等都有了代表。其中以节肢动物门中的三叶虫纲最为重要,其次为腕足动物。此外,古杯类、古介形类、软舌螺类、牙形刺、鹦鹉螺类等也相当重要。抛开牙形石不说,高等的脊索动物还有许多其他代表,如我国云南澄江动物群中的华夏鳗、云南鱼、海口鱼等,加拿大布尔吉斯页岩中的皮开虫,美国上寒武统的鸭鳞鱼。

    奥陶纪(5亿1千万年前到4亿3千8百万年前

    原始的脊椎动物出现

    奥陶纪(Ordovician period)是古生代的第二个纪,开始于距今5亿年,延续了6500万年。奥陶纪是地史上海侵最广泛的时期之一。在板块内部的地台区,海水广布,表现为滨海浅海相碳酸盐岩的普遍发育,在板块边缘的活动地槽区,为较深水环境,形成厚度很大的浅海、深海碎屑沉积和火山喷发沉积。奥陶纪末期曾发生过一次规模较大的冰期,其分布范围包括非洲,特别是北非、南美的阿根廷、玻利维亚以及欧洲的西班牙和法国南部等地。

    奥陶纪的生物界较寒武纪更为繁盛,海生无脊椎动物空前发展,其中以笔石、三叶虫、鹦鹉螺类和腕足类最为重要,腔肠动物中的珊瑚、层孔虫,棘皮动物中的海林檎、海百合,节肢动物中的介形虫,苔藓动物等也开始大量出现。

    奥陶纪中期,在北美落基山脉地区出现了原始脊椎动物异甲鱼类——星甲鱼和显褶鱼,在南半球的澳大利亚也出现了异甲鱼类。植物仍以海生藻类为主。

    裸蕨植物和鱼类时代

    志留纪(4.38亿年前到4.1亿年前) 笔石的时代,陆生植物和有颌类出现

    志留纪(Silurian period)是早古生代的最后一个纪。本纪始于距今4.35亿年,延续了2500万年。由于志留系在波罗的海哥德兰岛上发育较好,因此曾一度被称为哥德兰系。

    志留系三分性质比较显著。一般说来,早志留世到处形成海侵,中志留世海侵达到顶峰,晚志留世各地有不同程度的海退和陆地上升,表现了一个巨大的海侵旋回。志留纪晚期,地壳运动强烈,古大西洋闭合,一些板块间发生碰撞,导致一些地槽褶皱升起,古地理面貌巨变,大陆面积显著扩大,生物界也发生了巨大的演变,这一切都标志着地壳历史发展到了转折时期。

    志留纪的生物面貌与奥陶纪相比,有了进一步的发展和变化。海生无脊椎动物在志留纪时仍占重要地位,但各门类的种属更替和内部组分都有所变化。如笔石动物保留了双笔石类,新兴的单笔石类也很繁盛;腕足动物内部的构造变得比较复杂,如五房贝目、石燕贝目、小嘴贝目得到了发展;软体动物中头足纲、鹦鹉螺类显著减少,而双壳纲、腹足纲则逐步发展;三叶虫开始衰退,但蛛形目和介形目大量发展;节肢动物中的板足鲎,也称“海蝎”在晚志留世海洋中广泛分布;珊瑚纲进一步繁盛;棘皮动物中海林檎类大减,海百合类在志留纪大量出现。

    脊椎动物中,无颌类进一步发展,有颌的盾皮鱼类和棘鱼类出现,这在脊椎动物的演化上是一重大事件,鱼类开始征服水域,为泥盆纪鱼类大发展创造了条件。

    植物方面除了海生藻类仍然繁盛以外,晚志留世末期,陆生植物中的裸蕨植物首次出现,植物终于从水中开始向陆地发展,这是生物演化的又一重大事件。

    志留纪:

    生命在海洋中生,在海洋中发展壮大。在4亿多年前的志留纪,水域中的生物千姿百态,热闹非凡,植物已发展到大海藻,动物发展到低等的脊椎动物鱼类。而陆地上的生命却十分罕见,几乎到处是童山秃岭,一片荒凉。 末期,由于地壳剧烈运动,地球表面普遍出现了海退现象,不少水域变成了陆地,有的海底崛起了高山。沧海巨变,对水中的生物产生了巨大的影响。

    圆口类很象鱼,但缺乏成对的胸、腹鳍、特别是嘴巴上没有上下颌,所以又叫"无颌类"。古代的无颌类,都是些体外披着硬骨片的"甲胄鱼"。古代的无颌类,从奥陶纪出现以后,在志留纪很繁盛。但因为无颌,生活方式落后,仅能以流入中内的水中夹杂的食物为食,所以在生存斗争中,它们敌不过新兴的有颌鱼类而日趋衰落了。

    泥盆纪(4.1亿年前到3.6亿年前) 鱼类的时代

    泥盆纪(Devonian period)是晚古生代的第一个纪,开始于距今4.1亿年,延续了约5500万年。泥盆纪古地理面貌较早古生代有了巨大的改变。表现为陆地面积的扩大,陆相地层的发育,生物界的面貌也发生了巨大的变革。陆生植物、鱼形动物空前发展,两栖动物开始出现,无脊椎动物的成分也显著改变。

    腕足类在泥盆纪发展迅速,志留纪开始出现的石燕贝目成为泥盆纪的重要化石。此外,穿孔贝目、扭月贝目、无洞贝目和小嘴贝目在划分和对比泥盆纪地层中也极为重要。

    泡沫型和双带型四射珊瑚相当繁盛。早泥盆世以泡沫型为主,双带型珊瑚开始兴起;中、晚泥盆世以双带型珊瑚占主要地位。

    鹦鹉螺类大大减少,菊石中的棱菊石类和海神石类繁盛起来。

    正笔石类大部分绝灭,早泥盆世残存少量单笔石科的代表。

    竹节石类始于奥陶纪,泥盆纪一度达到最盛,泥盆纪末期绝灭。其中以薄壳型的塔节石类最繁盛,光壳节石类也十分重要。

    牙形石演化到泥盆纪又进入一个发展高峰,这个时期以平台型分子大量出现为特征。

    昆虫类化石最早也发现于泥盆纪。

    泥盆纪是脊椎动物飞越发展的时期,鱼类相当繁盛,各种类别的鱼都有出现,故泥盆纪被称为 “鱼类的时代”。早泥盆世以无颌类为多,中、晚泥盆世盾皮鱼相当繁盛,它们已具有原始的颚,偶鳍发育,成歪形尾。

    早泥盆世裸蕨植物较为繁盛,有少量的石松类植物,多为形态简单、个体不大的草本类型;中泥盆世裸蕨植物仍占优势,但原始的石松植物更发达,出现了原始的楔叶植物和最原始的真蕨植物;晚泥盆世到来时,裸蕨植物濒于灭亡,石松类继续繁盛,节蕨类、原始楔叶植物获得发展,新的真蕨类和种子蕨类开始出现。

    进入 蕨类植物和两栖动物的时代

    石炭纪 两栖动物的时代

    石炭纪(Carboniferous period)开始于距今约3.55亿年至2.95亿年,延续了6000万年。石炭纪时陆地面积不断增加,陆生生物空前发展。当时气候温暖、湿润、沼泽遍布,大陆上出现了大规模的森林,给煤的形成创造了有利条件。

    石炭纪又是地壳运动非常活跃的时期,因而古地理的面貌有着极大的变化。这个时期气候分异现象又十分明显,北方古大陆为温暖潮湿的聚煤区,冈瓦纳大陆却为寒冷的大陆冰川沉积环境。气候分带导致了动、植物地理分区的形成。

    石炭纪的海生无脊椎动物与泥盆纪比较起来,有了显著的变化。浅海底栖动物中仍以珊瑚、腕足类为主。早石炭世晚期的浮游和游泳的动物中,出现了新兴的筳类,菊石类仍然繁盛,三叶虫到石炭纪已经大部分绝灭,只剩下几个属种。

    最早发现于泥盆纪的昆虫类,在石炭纪得到进一步的繁盛,已知石炭、二叠纪的昆虫就达1300种以上。陆生脊椎动物进一步繁盛,两栖动物占到了统治地位。早石炭世一开始,两栖动物蓬勃发展,主要出现了坚头类(也称迷齿类),同时繁盛的还有壳椎类。

    早石炭世的植物面貌与晚泥盆世相似,古蕨类植物延续生长,但只能适应于滨海低地的环境;晚石炭世植物进一步发展,除了节蕨类和石松类外,真蕨类和种子蕨类也开始迅速发展。裸子植物中的苛达树是一种高大的乔木,成为造煤的重要材料之一。

    二叠纪 重要的成煤期

    二叠纪(Permian period)是古生代的最后一个纪,也是重要的成煤期。二叠纪开始于距今约2.95亿年,延至2.5亿年,共经历了4500万年。二叠纪的地壳运动比较活跃,古板块间的相对运动加剧,世界范围内的许多地槽封闭并陆续地形成褶皱山系,古板块间逐渐拚接形成联合古大陆(泛大陆)。陆地面积的进一步扩大,海洋范围的缩小,自然地理环境的变化,促进了生物界的重要演化,预示着生物发展史上一个新时期的到来。

    二叠纪是生物界的重要演化时期。海生无脊椎动物中主要门类仍是筳类、珊瑚、腕足类和菊石,但组成成分发生了重要变化。节肢动物的三叶虫只剩下少数代表,腹足类和双壳类有了新的发展。二叠纪末,四射珊瑚、横板珊瑚、筳类、三叶虫全都绝灭;腕足类大大减少,仅存少数类别。

    脊椎动物在二叠纪发展到了一个新阶段。鱼类中的软骨鱼类和硬骨鱼类等有了新发展,软骨鱼类中出现了许多新类型,软骨硬鳞鱼类迅速发展。两栖类进一步繁盛。爬行动物中的杯龙类在二叠纪有了新发展;中龙类游泳于河流或湖泊中,以巴西和南非的中龙为代表;盘龙类见于石炭纪晚期和二叠纪早期;兽孔类则是二叠纪中、晚期和三叠纪的似哺乳爬行动物,世界各地皆有发现。

    早二叠世的植物界面貌与晚二叠世相似,仍以节蕨、石松、真蕨、种子蕨类为主。晚二叠世出现了银杏、苏铁、本内苏铁、松柏类等裸子植物,开始呈现中生带的面貌。

    古生代到此结束....中生代开始啦!!!

    中生代是裸子植物和爬行动物的时代!

    三叠纪 爬行动物和裸子植物的崛起

    三叠纪(Triassic period)是中生代的第一个纪。始于距今2.5亿年至2.03亿年,延续了约5000万年。海西运动以后,许多地槽转化为山系,陆地面积扩大,地台区产生了一些内陆盆地。这种新的古地理条件导致沉积相及生物界的变化。从三叠纪起,陆相沉积在世界各地,尤其在中国及亚洲其它地区都有大量分布。古气候方面,三叠纪初期继承了二叠纪末期干旱的特点;到中、晚期之后,气候向湿热过渡,由此出现了红铯岩层含煤沉积、旱生性植物向湿热性植物发展的现象。植物地理区也同时发生了分异。

    生物变革方面,陆生爬行动物比二叠纪有了明显的发展。古老类型的代表(如无孔亚纲和下孔亚纲)基本绝灭,新类型大量出现,并有一部分转移到海中生活。原始哺乳动物在三叠纪末期也出现了。由于陆地面积的扩大,淡水无脊椎动物发展很快,海生无脊椎动物的面貌也为之一新。菊石、双壳类、有孔虫成为划分与对比地层的重要门类,而筳及四射珊瑚则完全绝灭。

    爬行动物在三叠纪崛起,主要由槽齿类、恐龙类、似哺乳的爬行类组成。典型的早期槽齿类表现出许多原始的特点,且仅限于三叠纪,其总体结构是后来主要的爬行动物以至于鸟类的祖先模式;恐龙类最早出现于晚三叠世,有两个主要类型:较古老的蜥臀类和较进化的鸟臀类。海生爬行类在三叠纪首次出现,由于适应水中生活,其体形呈流线式,四肢也变成桨形的鳍;似哺乳爬行动物亦称兽孔类,四肢向腹面移动,因此更适于陆地行走。

    原始的哺乳动物最早见于晚三叠世,属始兽类,所见到的化石都是牙齿和颌骨的碎片。

    三叠纪时,晚二叠世幸存的齿菊石类大量繁盛起来,中、晚三叠世的大部分菊石有发达的纹饰,有许多科是三叠纪所特有的。菊石的迅速演化为划分和对比地层创造了极重要的条件。

    双壳类也有明显变化,晚古生代的种类只有很少数继续存在,产生了许多新种类,并且数量相当繁多。尤其在晚三叠世,一些种属的结构类型变得复杂,个体也往往比较大。由于三叠纪的环境与古生代不同,非海相双壳类逐渐繁盛起来。

    裸子植物的苏铁、本内苏铁、尼尔桑、银杏及松柏类自三叠纪起迅速发展起来。其中除本内苏铁目始于三叠纪外,其它各类植物均在晚古生代就开始有了发展,但并不占重要地位。二叠纪的干燥性气候延续到了早、中三叠世,到了中三叠世晚期植物才开始逐渐繁盛。晚三叠世时,裸子植物真正成了大陆植物的主要统治者。

    朱罗纪 爬行动物和裸子植物的时代

    侏罗纪(Jurassic period)是中生代的第二个纪,始于距今2.03亿年,结束于1.35亿年,共经历了6800万年。

    生物发展史上出现了一些重要事件,引人注意。如恐龙成为陆地的统治者,翼龙类和鸟类出现,哺乳动物开始发展等等。陆生的裸子植物发展到极盛期。淡水无脊椎动物的双壳类、腹足类、叶肢介、介形虫及昆虫迅速发展。海生的菊石、双壳类、箭石仍为重要成员,六射珊瑚从三叠纪到侏罗纪的变化很小。棘皮动物的海胆自侏罗纪开始占领了重要地位。

    侏罗纪时爬行动物迅速发展。槽齿类绝灭,海生的幻龙类也绝灭了。恐龙的进化类型——鸟臀类的四个主要类型中有两个繁盛于侏罗纪,飞行的爬行动物第一次滑翔于天空之中。鸟类首次出现,这是动物生命史上的重要变革之一。恐龙的另一类型——蜥臀类在侏罗纪有两类最为繁盛:一类是食肉的恐龙,另一类是笨重的植食恐龙。海生的爬行类中主要是鱼龙及蛇颈龙,它们成为海洋环境中不可忽视的成员。

    三叠纪晚期出现的一部分最原始的哺乳动物在侏罗纪晚期已濒于绝灭。早侏罗世新产生了哺乳动物的另一些早期类型——多瘤齿兽类,它被认为是植食的类型,至新生代早期绝灭。而中侏罗世出现的古兽类一般被认为是有袋类和有胎盘哺乳动物的祖先。

    软骨硬鳞鱼类在侏罗纪已开始衰退,被全骨鱼代替。发现于三叠纪的最早的真骨鱼类到了侏罗纪晚期才有了较大发展,数量增多,但种类较少。

    侏罗纪的菊石更为进化,主要表现在缝合线的复杂化上,壳饰和壳形也日趋多样化,可能是菊石为适应不同海洋环境及多种生活方式所致。侏罗纪的海相双壳类很丰富,非海相双壳类也迅速发展起来,它们在陆相地层的划分与对比上起了重要作用。

    侏罗纪是裸子植物的极盛期。苏铁类和银杏类的发展达到了高峰,松柏类也占到很重要的地位。

    白垩纪 爬行动物和裸子植物由极盛走向衰灭

    白垩纪(Cretaceus period)是中生代的最后一个纪,始于距今1.35亿年,结束于距今6500万年,其间经历了7000万年。无论是无机界还是有机界在白垩纪都经历了重要变革。

    剧烈的地壳运动和海陆变迁,导致了白垩纪生物界的巨大变化,中生代许多盛行和占优势的门类(如裸子植物、爬行动物、菊石和箭石等)后期相继衰落和绝灭,新兴的被子植物、鸟类、哺乳动物及腹足类、双壳类等都有所发展,预示着新的生物演化阶段——新生代的来临。

    爬行类从晚侏罗世至早白垩世达到极盛,继续占领着海、陆、空。鸟类继续进化,其特征不断接近现代鸟类。哺乳类略有发展,出现了有袋类和原始有胎盘的真兽类。鱼类已完全的以真骨鱼类为主。

    白垩纪的海生无脊椎动物最重要的门类仍为菊石纲,菊石在壳体大小、壳形、壳饰和缝合线类型上远较侏罗纪多样。海生的双壳类、六射珊瑚、有孔虫等也比较繁盛。淡水无脊椎动物以软体动物的双壳类、腹足类和节肢动物的介形类、叶肢介类为主。

    早白垩世仍以裸子植物中的苏铁类、本内苏铁类、银杏类和松柏类为主,真蕨类仍然繁盛。从早白垩世晚期兴起的被子植物到晚白垩世得到迅速发展,逐渐取代了裸子植物而居统治地位。

    中生代(三叠纪-侏罗纪-白垩纪):[/b2]地球历史的中生代,被称为"裸子植物时代"。但是,在真正的陆生植物--裸子植物--兴盛的时候,真正的陆生脊椎动物--爬行动物--也发展起来了。因此,从动物的角度来看,中生代双可称为"爬行动物时代"。 爬行动物到中生代成了当时最繁荣昌盛的脊椎动物,它们形态各异,各成系统,霸占一方,到处是"龙"的天下。向海洋发展的,如鱼龙;向天空发展的,如飞龙;向陆地发展的,如各式各样的恐龙。 2亿多年前的三迭纪早期以后,有些陆生爬行动物又返回海洋,先后形成了各具特铯的鱼龙、蛇颈龙等,其中,一些还是当时海洋中显赫一时的大动物。 爬行类由爬行到飞行的种类也不少,如喙嘴龙,翼手龙等。上天不容易,由爬行到飞行不是一下子形成的,而是经过了漫长的岁月,是一代代有利于飞行的变异积累的结果。

    新生代开始啦!!它是被子植物和哺乳动物的时代!!

    第三纪 被子植物的时代

    中生代(三叠纪-侏罗纪-白垩纪): 地球历史的中生代,被称为"裸子植物时代"。但是,在真正的陆生植物--裸子植物--兴盛的时候,真正的陆生脊椎动物--爬行动物--也发展起来了。因此,从动物的角度来看,中生代双可称为"爬行动物时代"。 爬行动物到中生代成了当时最繁荣昌盛的脊椎动物,它们形态各异,各成系统,霸占一方,到处是"龙"的天下。向海洋发展的,如鱼龙;向天空发展的,如飞龙;向陆地发展的,如各式各样的恐龙。 2亿多年前的三迭纪早期以后,有些陆生爬行动物又返回海洋,先后形成了各具特铯的鱼龙、蛇颈龙等,其中,一些还是当时海洋中显赫一时的大动物。 爬行类由爬行到飞行的种类也不少,如喙嘴龙,翼手龙等。上天不容易,由爬行到飞行不是一下子形成的,而是经过了漫长的岁月,是一代代有利于飞行的变异积累的结果。

    第四纪 劳动创造了人类

    第四纪(Quaternary period)是地球历史的最新阶段,始于距今175万年。第四纪包括更新世和全新世两个阶段,二者的分界以地球上最近一次冰期结束、气候转暖为标志,大约在距今1万年前后。

    第四纪生物界的面貌已很接近于现代。哺乳动物的进化在此阶段最为明显,而人类的出现与进化则更是第四纪最重要的事件之一。

    哺乳动物在第四纪期间的进化主要表现在属种而不是大的类别更新上。第四纪前一阶段——更新世早期哺乳类仍以偶蹄类、长鼻类与新食肉类等的繁盛、发展为特征,与第三纪的区别在于出现了真象、真马、真牛。更新世晚期哺乳动物的一些类别和不少属种相继衰亡或灭绝。到了第四纪的后一阶段——全新世,哺乳动物的面貌已和现代基本一致。

    大量的化石资料证明人类是由古猿进化而来的。古猿与最早的人之间的根本区别在于人能制造工具,特别是制造石器。从制造工具开始的劳动使人类根本区别于其它一切动物,劳动创造了人类。另一个主要特点是人能直立行走。从古猿开始向人的方向发展的时间,一般认为至少在1000?万年以前。

    第四纪的海生无脊椎动物仍以双壳类、腹足类、小型有孔虫、六射珊瑚等占主要地位。陆生无脊椎动物仍以双壳类、腹足类、介形类为主。其它脊椎动物中真骨鱼类和鸟类继续繁盛,两栖类和爬行类变化不大。

    高等陆生植物的面貌在第四纪中期以后已与现代基本一致。由于冰期和间冰期的交替变化,逐渐形成今天的寒带、温带、亚热带和热带植物群。微体和超微的浮游钙藻对海相地层的划分与对比仍十分重要。

    新生代:7千万年以来的新生代,是被子植物大展宏图的时期,哺乳动物之所以能在新生代里大发展,其中就有大量发展起来的被子植物作雄厚的物质基础。 最早的有胎盘哺乳动物是食虫类。它们大都是些以昆虫为食的小动物,现代的刺猬是它们的后裔。它们在不同的自然环境里曾先后几次"趋异"进化,发展成20多个不同的类群,形成了有胎盘哺乳动物的大繁荣。

    新生代详细划分(单位:百万年)

    第三纪古新世 65―53

    始新世 53—36.5

    渐新世 36.5―23

    中新世 23―5.3

    上新世 5.3―1.8

    第四纪更新世 1.8―0.01

    全新世 0.01―现代

    地球上的地壳发展阶段

    1

    太古代―元古代

    地壳薄弱活动;海洋沉积占绝对优势;末期形成一些古地块。

    2

    震旦纪

    海洋沉积占优势;古地台形成。

    3

    寒武纪―奥陶纪―志留纪

    加里东运动, 海洋沉积仍占优势;末期,加里东地槽褶皱隆起。

    4

    泥盆纪―石炭纪―二迭纪

    海西运动,陆相对扩大;末期许多地槽隆起,北大陆联合,南大陆开始解体。

    5

    三迭纪―侏罗纪―白垩纪

    燕山运动,南大陆解体,北大陆普遍活动;环太平洋地槽内带隆起成山。

    6

    第三纪古新世、始新世、渐新世、中新世、上新世

    喜马拉雅造山运动,古地台、古褶皱普遍活动;古地中海带及环太平洋外带,隆起成山。

    7

    第四纪更新世、全新世―新构造期

    差异升降显著,冰川广布。

    地球上的动物界发展阶段

    1太古代

    最低等原始生物产生

    2寒武纪―奥陶纪―志留纪

    海生无脊椎动物时代

    3泥盆纪

    鱼时代

    4石炭纪―二迭纪

    两栖动物时代

    5三迭纪―侏罗纪―白垩纪

    爬行动物时代

    6第三纪

    哺乳动物时代

    7第四纪

    人类时代

    地球上的植物界发展阶段

    1太古代

    最低等原始生物产生

    2震旦纪―寒武纪―奥陶纪早期

    海生藻类时代

    3奥陶纪早期―石炭纪―二迭纪早期

    陆生孢子植物时代

    4二迭纪早期―三迭纪―侏罗纪―白垩纪中期

    裸子植物时代

    5白垩纪中期―第三纪―第四纪

    被子植物时代

    地球上的部分生物盛行期

    1地球天文时期

    2太古代 前震旦纪

    藻类、海棉

    3元古代: 震旦纪

    藻类、海棉

    4古生代: 寒武纪

    藻类、海棉、腕足动物、海林檎、三叶虫、

    奥陶纪:藻类、海棉、珊瑚、腕足动物、海林檎、海百合、海蕾、海星、三叶虫、

    志留纪:藻类、海棉、珊瑚、腕足动物、海百合、海蕾、海星、三叶虫、鹦鹉螺、

    泥盆纪:藻类、海棉、珊瑚、腕足动物、海林檎、海百合、海蕾、海星、三叶虫、鳞木、鹦鹉螺、

    石炭纪:藻类、海棉、珊瑚、腕足动物、海林檎、海百合、海蕾、海星、三叶虫、沙鱼、鳞木、鹦鹉螺、

    二迭纪:藻类、海棉、珊瑚、海百合、三叶虫、沙鱼、鳞木、鹦鹉螺

    5中生代

    地球是由岩石圈,和什么四个圈层构成

    地球外圈分为四圈层,即大气圈、水圈、生物圈和岩石圈

    大气圈

    大气圈是地球外圈中最外部的气体圈层,它包围着海洋和陆地。大气圈没有确切的上界,在2000 ~ 16000 公里高空仍有稀薄的气体和基本粒子。在地下,土壤和某些岩石中也会有少量空气,它们也可认为是大气圈的一个组成部分。地球大气的主要成份为氮、氧。由于地心引力作用,几乎全部的气体集中在离地面100公里的高度范围内,其中75%的大气又集中在地面至10公里高度的对流层范围内。根据大气分布特征,在对流层之上还可分为平流层、中间层、高层大气等。

    水圈

    水圈包括海洋、江河、湖泊、沼泽、冰川和地下水等,它是一个连续但不很规则的圈层。从离地球数万公里的高空看地球,可以看到地球大气圈中水汽形成的白云和覆盖地球大部分的蓝铯海洋,它使地球成为一颗"蓝铯的行星"。其中海洋水质量约为陆地(包括河流、湖泊和表层岩石孔隙和土壤中)水的35倍。如果整个地球没有固体部分的起伏,那么全球将被深达2600米的水层所均匀覆盖。大气圈和水圈相结合,组成地表的流体系统。

    生物圈

    由于存在地球大气圈、地球水圈和地表的矿物,在地球上这个合适的温度条件下,形成了适合于生物生存的自然环境。人们通常所说的生物,是指有生命的物体,包括植物、动物和微生物。据估计,现有生存的植物约有40万种,动物约有110多万种,微生物至少有10多万种。据统计,在地质历史上曾生存过的生物约有5-10亿种之多,然而,在地球漫长的演化过程中,绝大部分都已经灭绝了。现存的生物生活在岩石圈的上层部分、大气圈的下层部分和水圈的全部,构成了地球上一个独特的圈层,称为生物圈。生物圈与其他圈层相比,其不同点:首先,其他圈层是由无机物组成的,而生物则构成了生物圈的主体,是一个非常活跃的圈层;其次,其他圈层都具有相对独立的空间结构,而生物圈则渗透于其他圈层之中,形成一个特殊的结构。生物圈是太阳系所有行星中仅在地球上存在的一个独特圈层。

    岩石圈

    对于地球岩石圈,主要由地壳和地幔圈中上地幔的顶部组成,从固体地球表面向下穿一直延伸到软流圈。岩石圈厚度不均一,平均厚度约为100公里。由于岩石圈及其表面形态与现代地球物理学、地球动力学有着密切的关系,因此,岩石圈是现代地球科学中研究得最多、最详细、最彻底的固体地球部分。

    生态学分哪几个层次 分别讲什么?

    明确研究对象,有助于对生态学定义的了解。生态学研究的特殊性,可以从以下几方面来理解:

    1.生态学是研究生物与环境、生物与生物之间相互关系的一门生物学基础分支学科。生物学各分支学科的关系,犹如切多层蛋糕,水平切法表示把生物学按研究的生命现象各个方面加以划分,例如生理学、形态学、遗传学、进化论等各有其特殊研究对象,而生态学研究的则是活生物在自然界中与环境的相互作用和生物之间的相互作用。垂直切法则是按系统分类,把生物学划分为动物学、植物学、细菌学等学科。由此可见,生态学不仅是生物学的基础分支学科之一,也是每一门分类学科的一个重要组成部分。

    2.生态学是研究以种群、群落和生态系统为中心的宏观生物学。现代生物学可按照图1-1所示的方式,把研究对象划分为大小不同的组织层次。生态学研究的主要是右侧的层次。从这个意义上讲,生态学属于宏观生物学的范畴。

    经典生态学研究的最低层次是有机体(个体),按其研究的大部分问题来看,当前的个体生态学应属于生理生态学的范畴,这是生理学与生态学交界的边缘学科。当然,近代一些生理生态学家更偏重于个体从环境中获得资源和资源分配给维持、生殖、修复、保卫……等方面的进化和适应对策上,而生态生理学家则偏重于对各种环境条件的生理适应及其机制上。但是更多的学者把生理生态学和生态生理学视为同义的。

    种群(population)是栖息在同一地域中同种个体组成的复合体。种群是由个体组成的群体,并在群体水平上形成了一系列新的群体的特征,这是个体层次上所没有的。例如种群有出生率、死亡率、增长率;有年龄结构和性比;有种内关系和空间分布格局等等。动物种群生态学在本世纪60年代以前是动物生态学的主流。

    生物群落(biotic community或biocoenosis)是栖息在同一地域中的动物、植物和微生物的复合体。同样,当群落由种群组成为新的层次结构时,产生了一系列新的群体特征,诸如群落的结构、演替、多样性、稳定性……等。植物群落生态学是本世纪60年代以前植物生态学的主体(另一是个体生态学)。

    生态系统(ecosystem)是在同一地域中的生物群落和非生物环境的复合体,它与生物地理群落(biogeocoenosis)同义。对生态系统是否与生物群落同一组织层次,至今仍有不同看法。有的学者认为生态系统生态学就是生物群落学,另一些学者把它们划分为两个层次。本世纪 60年代以后,由于世界的人口、环境、资源等威胁人类生存的挑战性问题,生态系统研究也发展为生态学研究的主流。

    生物圈(biosphere)是指地球上的全部生物和一切适合于生物栖息的场所,它包括岩石圈的上层、全部水圈和大气圈的下层。岩石圈是所有陆生生物的立足点,岩石圈的土壤中还有植物的地下部分、细菌、真菌、大量的无脊椎动物和掘土的脊椎动物,但它们主要分布在土壤上层几十厘米之内。深刻几十米以下,就只有少数植物的根系才能达到。在更深的地下水中(超过100多米),还可发现棘鱼等动物。岩石圈中最深的生命极限可达到2500~3000米处,在那里还有石油细菌。在大气圈中,生命主要集中于最下层,也就是与岩石圈的交界处。有的鸟类能飞到数千米的空中,昆虫和一些小动物能被气流带到更高的地方,甚至在22000米的平流层中也曾发现有细菌和真菌。但这些地方毕竟不能为生物提供长期生活的条件,所以人们称之为副生物圈(parabiosphere)。水圈中几乎到处都有生命,但主要集中在表层和底层。最深的海洋可达11000米以上,就在这样的深处也有深海生物。

    随着全球性环境问题日益受到重视,如温室效应、酸雨、臭氧层破坏、全球性气候变化,全球生态学(global ecology)已应运而生,并成为人们普遍关注的领域。

    3.生态学研究的重点在于生态系统和生物圈中各组成成分之间,尤其是生物与环境、生物与生物之间的相互作用。

    生态学在研究生物与自然环境的相互作用时,还必须依靠生物学以外的其他自然科学,诸如气象学、气候学、海洋学、湖沼学、土壤学等,在研究生态系统时尤其重要。值得一提的是,不仅生态学在其发展过程中提出了包括自然环境和一切生物的生态系统和生态系统生态学的概念,而且在上述这些自然科学发展中也提出了所谓海洋生态系统、农业生态系统、森林生态系统和土壤生态系统等研究方向。生态学的一些原理,已经深入到许多自然科学学科之中,并被广泛地接受。学科间的相互渗透,发展边缘科学,建立学科间的综合性研究,是现代科学发展的特点,也是生态学发展的特点。在近代的生态系统研究中,如国际性的IBP(国际生物学计划)、SCOPE(环境问题的科学委员会)、MAB(人与生物圈计划)和IGBP(国际地圈生物圈计划),都是从事多学科综合研究的。

    上一页12下一页